Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brief Bioinform ; 24(5)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37738402

RESUMO

Understanding the function of the human microbiome is important but the development of statistical methods specifically for the microbial gene expression (i.e. metatranscriptomics) is in its infancy. Many currently employed differential expression analysis methods have been designed for different data types and have not been evaluated in metatranscriptomics settings. To address this gap, we undertook a comprehensive evaluation and benchmarking of 10 differential analysis methods for metatranscriptomics data. We used a combination of real and simulated data to evaluate performance (i.e. type I error, false discovery rate and sensitivity) of the following methods: log-normal (LN), logistic-beta (LB), MAST, DESeq2, metagenomeSeq, ANCOM-BC, LEfSe, ALDEx2, Kruskal-Wallis and two-part Kruskal-Wallis. The simulation was informed by supragingival biofilm microbiome data from 300 preschool-age children enrolled in a study of childhood dental disease (early childhood caries, ECC), whereas validations were sought in two additional datasets from the ECC study and an inflammatory bowel disease study. The LB test showed the highest sensitivity in both small and large samples and reasonably controlled type I error. Contrarily, MAST was hampered by inflated type I error. Upon application of the LN and LB tests in the ECC study, we found that genes C8PHV7 and C8PEV7, harbored by the lactate-producing Campylobacter gracilis, had the strongest association with childhood dental disease. This comprehensive model evaluation offers practical guidance for selection of appropriate methods for rigorous analyses of differential expression in metatranscriptomics. Selection of an optimal method increases the possibility of detecting true signals while minimizing the chance of claiming false ones.


Assuntos
Benchmarking , Doenças Estomatognáticas , Criança , Humanos , Pré-Escolar , Biofilmes , Simulação por Computador , Ácido Láctico
2.
Genes (Basel) ; 15(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38254941

RESUMO

Biological processes underlying health and disease are inherently dynamic and are best understood when characterized in a time-informed manner. In this comprehensive review, we discuss challenges inherent in time-series microbiome data analyses and compare available approaches and methods to overcome them. Appropriate handling of longitudinal microbiome data can shed light on important roles, functions, patterns, and potential interactions between large numbers of microbial taxa or genes in the context of health, disease, or interventions. We present a comprehensive review and comparison of existing microbiome time-series analysis methods, for both preprocessing and downstream analyses, including differential analysis, clustering, network inference, and trait classification. We posit that the careful selection and appropriate utilization of computational tools for longitudinal microbiome analyses can help advance our understanding of the dynamic host-microbiome relationships that underlie health-maintaining homeostases, progressions to disease-promoting dysbioses, as well as phases of physiologic development like those encountered in childhood.


Assuntos
Disbiose , Microbiota , Humanos , Análise por Conglomerados , Progressão da Doença , Homeostase , Microbiota/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...